Realistic and Fast 3D Atmospheric Simulations with Clouds
using the GPU-accelerated SMART-G Radiative Transfer code
for the 3MI instrument
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Introduction

With the 3MI (Multi-viewing, Multi-channel, Multi-polarization Imager) instrument, the demand for a fast and accurate 3D polarized radiative transfer code is more critical than ever. In the VNIR
range, the instrument covers a field of view of 2200 km with a nadir resolution of 4 km? (509x509-pixel camera), and with 14 acquisitions (14 viewing directions) for the same target [1]. To meet
these requirements, we use SMART-G [2], a GPU-parallelized polarized radiative transfer code. We have validated its proper consideration of the 3D atmosphere i.e., 3D variability of clouds,
molecules, and aerosols, by comparing it with IPRT reference results [3]. We then get a first quantification of the computational performance of a GPU-accelerated code (here SMART-G) compared
to a reference CPU-based code (here 3DMCPOL [4]). Finally, we developed a realistic backward camera mode specifically adapted to the 3MlI instrument and compared it with more conventional
and less realistic simulation approaches.

Validation
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Application to 3MI
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® The atmospheric and illuminationn conditions are the same as the IPRT
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® Implementation of a cloud-specific variance reduction method such as Iwabuchi et al. [6]

® Consideration of the variability of the sun zenith and azimuth angles since we have a swath of 2200 km
® Evaluation of biases introduced by other approximate models (e.g. semi-3D with multiple 1D simulations)
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